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EcolLife: Executive Summary @
Ecol.ife

v Introducing a new problem space: Carbon
Particle Swarm Optimization

footprint of serverless computing model.
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and new hardware to reduce the carbon
footprint but also, achieve high performance.

V CO,-Opt 8 Oracle [] Service-Time-Opt <> Energy-Opt el Ecolife

- %
| +,
s [

10 20 30 40 50

v Novel Particle Swarm Optimization
(PSO) based optimizer to achieve near- G s bon Op)

Oracle results.

S
o

Service Time (%
ncrease w.r.t

N
o

Service-Time-Opt)

o
o



Serverless Computing Model Becoming
Increasingly Popular for HPC Workflows
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Service Phase

Serverless Providers Keep Functions in Memory to
Avoid Cold Start Overhead
Container Dependencies Function Function l&
Initialization Loading Loading Execution

|
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Service Phase
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Computing Carbon Footprint
An Emerging Challenge

The Washington Post
Democracy Dies in Darkness

CLIMATE Environment Weather Climate Solutions  Climate Lab  Green Living  Business of Climate

World is on brink of catastrophic
warming, U.N. climate change report says

A dangerous climate threshold is near, but ‘it does not mean we are doomed’ if swift action is taken, scientists say

The Carbon Footprint of
Amazon, Google, and
Facebook Is Growing

How cloud computing—and
especially Al—threaten to make
climate change worse

Microsoft builds first datacenters with
wood to slash carbon emissions
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HPC and Datacenter Carbon Footprint Efforts

Chasing Carbon (HPCA ’21)
ACT (ISCA "22)
Carbon Explorer (ASPLOS ’22)

Operational CO, = Energy x CI

Embodied COQ = %X EmbOdiedHardware
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What about carbon footprint of serverless computing?



HPC and Datacenter Carbon Footprint Efforts

Chasing Carbon (HPCA ’21)
ACT (ISCA "22)
Carbon Explorer (ASPLOS ’22)

Operational COy = Energy x CI

Embodied COQ = Li’fgl'i‘r;(rane X EmbOdiedHardware

Carbon footprint is the dark secret of serverless computing.
Currently, no carbon-aware solution for serverless workloads
and systems!

What about carbon footprint of serverless computing?



Unique and Hidden Carbon Footprint

of Serverless Computing
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Serverless functions generate a significant carbon footprint during their

keep-alive period — which is unique compared to the traditional non-

serverless computing model. Longer keep-alive period leads to higher
performance due to higher likelihood of warm starts.



Opportunity Embodied vs. Operational Carbon Trade-Off

Old Hardware
Slow performance, high operational carbon, but low embodied carbon
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EcolLife’s Old Hardware Use Enables New Opportunities
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EcolLife’s Old Hardware Use Enables New Opportunities
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EcolLife’s Old Hardware Use Enables New Opportunities
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Carbon Opportunity of Multi-Generation Hardware Mix
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The use of relatively older-generation hardware, which inherently has a
lower embodied carbon footprint, opens the opportunity to lower the
carbon footprint while achieving high performance.



Exploiting Old and New Hardware Mix is Challenging

Case A: Keep alive on older hardware Case B: Keep alive on newer hardware

® I 5min, warm start. A [Omin, cold start.
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A longer keep-alive period on older-generation hardware can potentially
reduce both service time and carbon footprint, but exploiting this
opportunity depends on function characteristics and carbon intensity.



Exploiting Old and New Hardware Mix is Challenging
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Co-optimization of service time and carbon footprint has
significant potential, but is extremely challenging.



@ EcolLife Objectives and Key ldeas

Ecolife
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The goal of Ecol.ife is to determine the most suitable location
(older-generation hardware or newer-generation hardware)
and keep-alive periods for serverless functions.



How to Optimize for EcolLife Objectives?

Ecolife uses Particle Swarm Optimization (PSO) to determine the keep-alive time of
functions.
Inertia Weight N
Updated Velocity Previous Velocity Personal Best Global Best Position
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https://esa.github.io/pagmo2/docs/cpp/algorithms/pso.html



Key Idea I: EcolLife’s Dynamic PSO

Dynamically adjust these weights based on the changes in carbon intensity and
function invocation.
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Key ldea lI: EcoLife’s Warm Pool Adjustment

Functions to keep alive Old Warm Pool Adjustment
For new For old \Ranking by:Scors)
o A A
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q A

Old Pool Out of Memory @ Evicted to new

Old Warm Pool A‘l /12 /13 Unused Memory ll /13 15 /16 17
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Ecolife adopts a priority eviction mechanism to sort functions already
kept alive in the warm pool as well as those about to be kept alive to
find the best arrangement.



EcoLife Optimization Workflow

Function



EcoLife Optimization Workflow
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EcolLife Optimization Workflow

RAM | Old Warm Pool | RAM | New Warm Pool

Profiled ¥
Dat / xecution Placement Decision Maker N
< = > : |:> Carbon during
Function 9 Service Time Servic/e‘Time

N

Sr 4 SC.
Sfmax CSCmax

Database

f score — As

. /




Profiled
Data

EcolLife Optimization Workflow

RAM

=

> Function :>

Database

A 4

Old Warm Pool | RAM | New Warm Pool

/

Service Time
AN
Sr
score — As
fc ) Sfmax

.

+ Ac

xecution Placement Decision Maker

~

Carbon during

Service Time

SC
S Crmax

/

Execution Location




EcolLife Optimization Workflow

RAM
Profiled
@ Data
< > Function :>

Database .

Old Warm Pool

RAM [ New Warm Pool

/ xecution Placement Decision Maker \
Carbon during
Service Time Service Time
N / -
S, SC.,
score — As Ac
fc ) Sfmax + Scmax

Function

. /

Execution Location

CORE'i7
9th Gen



EcolLife Optimization Workflow
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EcolLife Optimization Workflow
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EcolLife Optimization Workflow
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EcolLife Optimization Workflow
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EcolLife Optimization Workflow
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Ecolife is Effective at Reducing

Both Carbon Footprint and Service Time

Ecolife provides close to Oracle
savings in both carbon footprint
and service time.
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Ecolife outperforms single-
generation only solutions.
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Ecolife stays close to the Oracle
for different types of functions.



Novel PSO Extensions of Ecol.ife are Key to its Efficacy
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EcolLife is Robust under Different Operating Scenarios

Ecolife can be applied to single-
generation hardware as well.

Ecolife is effective and close to
Oracle across different multi-
generation hardware pairs.

Ecolife is effective and close to
Oracle across different geographical
regions.
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Summary of Key Contributions

v Ecolife Is the first scheduler that reduces the carbon @
footprint of serverless functions.

Ecolife

v Ecol.ife introduces novel key ideas to effectively
leverage Particle Swarm Optimization (PSO) in the
context of serverless scheduling and sustainability.

v Ecollife is consistently within /./79% and 5.5% points
from Oracle in terms of service time and carbon Contact

footprint. Yankai Jiang
jlang.yank@northeastern.edu
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Carbon Footprint for Serverless Computing
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Carbon Footprint for Serverless Computing
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Why does Ecol.ife Use PSO?

PSO can rapidly converge to global optima due to its exploration-exploitation
balance. (Low decision-making overhead)

PSO can continuously adapt to changing conditions and provide near-optimal
solutions in dynamic environments, which is needed in a serverless context.

PSO can reduce the carbon footprint by 17.4% and service time by 7.2%,
compared to Genetic Algorithm.

PSO can have 6.2% reduction in carbon footprint and a |3.46% decrease in service
time compared to the Simulated Annealing Algorithm.



