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WaterWise: Executive Summary

v" A Novel Sustainability-Focused Job Scheduler .
. . WaterWise
Carbon and water footprint savings are often at odds
with each other, and require intelligent exploitation of Mixed Integer Linear Programming Formulation
temporal and spatial opportunities. O vaser q?gﬁ
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of geographically distributed data centers.

YV Carbon-Greedy-Opt [l] Water-Greedy-Opt () WaterWise
25% Delay Tolerance 50% Delay Tolerance 75% Delay Tolerance 100% Delay Tolerance

30
O 0 0
o |1 o |1 5
13 ' ' ' v
Im;rv v v

10 20 30 4010 20 30 4010 20 30 4010 20 30 40
Carbon Footprint Saving (% saving w.r.t. Baseline)

N

=)
tt

v" Built-in Awareness of Water Scarcity Factor A
water drop may not have equal value at different
geographical locations.
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Before sharing the lessons learned from
desighing WaterWise...



Before sharing the lessons learned from
desighing WaterWise...

.. a primer on carbon and water footprint models

WaterWise’s comprehensive water footprint modeling
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Carbon Footprint Modeling

Embodied and Operational Carbon
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Tiifetime and carbon emission during manufacturing.




Carbon Footprint Modeling
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Embodied and Operational Carbon

Accounting for carbon emissions of energy
sources during operations (carbon intensity)
and carbon emission during manufacturing.




Carbon Footprint Modeling

Embodied and Operational Carbon

tional bodied
CO,; = CO L™ 4 cogm . -
2] 2.j 2 Accounting for carbon emissions of energy
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Tiifetime and carbon emission during manufacturing.
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Carbon Footprint Modeling

Embodied and Operational Carbon

COZ,j _ Cocz),p}eratlonal - COS?bOdied

. Intensity Lj embodied
COz; = Ej - COZ Tt C 2,server
lifetime

Accounting for carbon emissions of energy
sources during operations (carbon intensity)
and carbon emission during manufacturing.
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WaterWise Water Footprint Modeling of Data Centers
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WaterWise Water Footprint Modeling of Data Centers

. ‘;', ;A’* R RS i 4 .

M},?w ava Water Scarcity Factor

: o 4 4;-../‘;?; /\\
BN 7 & Operational Water Footprint (Offsite)

3

Operational Water Footprint (Onsite)

Embodied Water Footprint




Water Scarcity Factor (WSF)
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The Water Scarcity Factor (WSF) serves to gauge the degree of water stress in
specific regions, and measure the avallability of freshwater relative to demand
(a higher WSF indicates that the region is more scarce).
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WaterWise Water Footprint Modeling of Data Centers
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Operational Water Footprint (Onsite)

Air Cooled IT Rack
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The onsite water footprint refers to the amount of water evaporated and
dissipated during heat transfer and blowdown in the cooling process.



Operational Water Footprint (Onsite)
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The onsite water footprint refers to the amount of water evaporated and
dissipated during heat transfer and blowdown in the cooling process.



Operational Water Footprint (Onsite)
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The Water Usage Effectiveness (WUE) metric quantifies the water
required to dissipate heat per unit of energy generated, measured In

L/kWh (lower s better).



WaterWise Water Footprint Modeling of Data Centers

- : - P »' o ‘."" "‘4@ = >
"'>‘,///\ X

\\,,% ; /// | e Operational Water Footprint (Onsite)

=

Water Scarcity Factor

Operational Water Footprint (Offsite)

Embodied Water Footprint




Operational Water Footprint (Offsite)

Renewable Energy  Fossil Energy
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The offsite water footprint is the water usage resulting from using various energy
sources to generate electricity for data centers.



Operational Water Footprint (Offsite)
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The Energy Water Intensity Factor
(EWIF) 1s dependent on the energy
source being used and reflects the
intensity of water consumption
needed to generate the electricity.
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The Power Usage Effectiveness (PUE) factor
measures the energy efficiency of a data center.



WaterWise Water Footprint Modeling of Data Centers
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Embodied Water Footprint

The embodied water footprint is the water consumption generated
during server design and manufacturing.

Water Consumption by Life Cycle Stage . .
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Water Footprint: Putting it All Together
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Water Footprint: Putting it All Together
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Water Footprint: Putting it All Together
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Water Footprint: Putting it All Together
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Water Footprint: Putting it All Together
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Water Footprint: Putting it All Together
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WaterWise: Insights and Key Ideas

... observations, opportunities, and design ideas

&



Observation |: Carbon-friendly energy sources can have

higher water footprint requirements.
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The amount of water required to generate electricity for powering data centers
from different energy sources varies across energy sources.

The water consumption to generate energy from carbon-friendly and carbon-
intensive energy sources varies significantly.



Observation |: Carbon-friendly energy sources can have

higher water footprint requirements.
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Renewable Energy Fossil Energy Renewable Energy  Fossil Energy
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Water and carbon savings are competing goals
Renewable energy sources can increase the water footprint!
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The amount of water required to generate electricity for powering data centers
from different energy sources varies across energy sources.

The water consumption to generate energy from carbon-friendly and carbon-
intensive energy sources varies significantly.



Observation 2: Low Carbon Intensity Regions May be

Severely Water-Stressed and High Water Intensity
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Geographical regions with availability to low carbon intensity energy sources can
be water-stressed regions. The carbon-friendly but water-stressed regions may
have a relatively higher water scarcity factor.

Consideration of the water scarcity factor changes the trade-off between carbon
and water sustainability (carbon vs water intensity).
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Key Idea |: Delay Tolerance Improves the Savings

Delay Tolerance: an allowable % increase in the service time of a job
compared to its execution time of the job If it had zero transfer latency and

queuing delay. G)



Observation 3: Delay Tolerance Improves the Savings
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It jobs could tolerate some latency in their service time — the opportunity
for carbon and water footprint savings improves.



WaterWise Optimization Framework

© Waster Scarcity Factor 0;9 .
€ Carbon Intensity ~ Delay Tolerance ‘LL_U> Job Slack ManagemenD

v .
Optimization Decision Controller
H P | —
— ? -’ .‘
Job Batch t

SIS / /N O\ \

Energy Proﬁle ( [} G G LT gs S

w3 () @D &0 OB

E"e"g,Y Water 5> Zurich  Madrid Oregon  Milan  Mumbai |YVater Usage
Intensity Factor \_ 0 00 ) . 0 00 0 0 0 /Effectiveness

|
|
:
|
\/ \/ n
;:.;ss\gﬁ ¢
= 5
o oa




Formulation

WaterWise Problem Formulation

Carbon Part M @) Water Part
COZ (m n) HZO(m’ n)
m=1 n=1 J

+Aref - (Aco, - COE?,f, + A0 - HoOfEh)]

g History Part



Key Idea 2: MILP Problem Formulation

Carbon Part M ®, Water Part
C CO2(m, n) HyO(m, n)
L= mlnmz_:l ; Xm,n + [Aco, cop™ + AH,0 H, 07
)
«© +Aret * (Aco, - COE‘}g + A0 - HoOph)]
E g History Part
. M
O me,n =ds  Ym €412 M} s.t. Z xmn < cap(n), Vne{1,2..., N}
m n=1 A . m=1 .
ssign Capacity
men < (TOL%), Vme€ {1,2,....M}  Delay Tolerance

The primary objective of WaterWise Is to minimize the carbon footprint
and water footprint when executing jobs in geographically distributed data
centers, under different specified levels of delay tolerance.



WaterWise: Key ldeas

* Key ldea 3: Soft Constraints

When the solver cannot provide feasible and robust optimization outputs,
WaterWise softens the delay tolerance constraint.

, M N COy(m, n) H;0(m, n)
min Z me,n ’ [ACOZ comax +/1H20 Hzo;pax



WaterWise: Key ldeas

* Key ldea 3: Soft Constraints

When the solver cannot provide feasible and robust optimization outputs,
WaterWise softens the delay tolerance constraint.

M N
. COy(m, n) H;0(m,n)
min ), ), xmn - (460, =gom + M50 H,O%

M N
+/1ref . (/1(3()2 . COZ{ + AHZO‘ . HzO;ef)] +o0- Z me,n

m=1 n=1

* Key ldea 4: Job Slack Management

WaterWise designs slack management to determine which jobs are closer
to their respective delay tolerance violation (recall that MILP does not
retain state information).

avg

Urgency = TOL% - tm — Lm - (T::art _ Tcurrent)



Brief Overview of Experimental Methodology

Workloads

AWS m5.metal: Water Footprint PARSEC Benchmark
eu-central-2 (Zurich) Carbon Footprint CloudSuite Benchmark
us-west-2 (Oregon) Latency

eu-south-2 (Spain) Google Borg trace,
eu-south-| (Milan) Alibaba Cloud trace

ap-south-1 (Mumbai)



WaterWise Effectively Co-optimizes

Carbon and Water Footprint

V Carbon-Greedy-Opt [] Water-Greedy-Opt () WaterWise
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WaterWise provides significant carbon and water footprint savings.
Higher delay tolerance yields additional carbon and water footprint savings.



WaterWise Is Practical and Effective

Across Google and Alibaba Traces
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WaterWise Is Effective Across Different Levels of

Data Center Utilization and Region Availability
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WaterWise: Summary Key Contributions

v WaterWise Is the first open-source framework to enable Wse
exploration of carbon- and water-aware scheduling.

v WaterWise employs delay tolerance, soft constraints, and
slack management to solve the multi-objective
optimization.

v WaterWise provides approx. 20% carbon footprint
savings and |4% water footprint savings compared to
baseline. Contact

Yankal Jiang
jlang.yank@northeastern.edu
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Sustainability in Computer System

An Emerging Challenge

The Washington Post
Democracy Dies in Darkness

CLIMATE Environment Weather Climate Solutions  Climate Lab  Green Living  Business of Climate

World is on brink of catastrophic
warming, U.N. climate change report says

A dangerous climate threshold is near, but ‘it does not mean we are doomed’ if swift action is taken, scientists say

Clean Energy

Virginia Has the Biggest Data Center Market
in the World. Can It Also Decarbonize Its
Grid?

J | Bh.GEIE r . -j] %
Microsoft builds first datacenters with
wood to slash carbon emissions

The Carbon Footprint of
Amazon, Google, and
Facebook Is Growing

How cloud computing—and
especially Al—threaten to make
climate change worse

Drought-stricken communities push back
against data centers

ed cities welcome Big Tech to build hundreds of million-dollar data centers in

their backyards, critics question the environmental cost.

— Microsoft Unveils Zero-Water Datacenter
w225 Design to Slash Cooling Water Use

y ESG News + December 12, 2024 Share: § W in
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Carbon Emissions Received Significant Attention
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Carbon Emissions Received Significant Attention
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Carbon Emissions Received Significant Attention
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WaterWise is Effective at Reducing

Carbon and Water Footprints
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WaterWise is Effective at Reducing

Carbon and Water Footprints
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WaterWise is Effective at Reducing

Carbon and Water Footprints
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