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What are forever chemicals and why are they harmful?
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What are forever chemicals and why are they harmful?

‘ ‘ ‘ Forever chemicals lasts in environment for

CF, CsFs CaFa C.F thousands of years and have severely high
Tetrafluoromethane Octafluoropropane Octafluorocyclobutane Hexafluoroethane \ . .
global warming potential — much higher than

that of carbon dioxide

CHF, NF; SFe Other
Trifluoromethane Nitrogen trifluoride Sulfur hexafluoride
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Why should the computer systems community focus on
forever chemicals?



Why should the computer systems community focus on
forever chemicals?

Q Manufacturing Emissions D Operational Emissions
Explored by the Explored by the
Systems Community ForgetMeNot's Focus Systems Community
Embodied Carbon Fluorinated Compounds Operational Carbon
Material Extraction, PFAS, HFCs, and Etching, Cleaning, Altering Design, —_
Manufacturing Energy Usage, other Fluorinated Lithography, Material Usage, and E?;Ziﬁztfg%rgfgri;gy
Assembly, Transportation, and Compounds Fabrication Fluids, Lithography duiri -
: ) uring Operation
End-of-life and others. Technique
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Carbon Systems Research Toward Operational Carbon

The forever chemicals are emitted in the atmosphere from fabrication facilities due
to their use In various steps of semiconductor manufacturing; these emissions are
not currently accounted for in systems research



We should actively try to reduce the emissions of
fluorinated compounds (forever chemicals)
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The global warming impact of forever chemical emissions from semiconductor manufacturing is
much higher than that of embodied carbon and it Iis steadily rising over the years



Various steps of manufacturing contribute toward
emissions of fluorinated compounds
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Various steps of manufacturing contribute toward
emissions of fluorinated compounds
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Various steps of manufacturing contribute toward
emissions of fluorinated compounds
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ForgetMeNot models emissions from various sources

Manufacturing
Emissions

for targeted emissions control
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ForgetMeNot models fluorinated compound emissions of new hardware by combining
fabrication facility practices, reference hardware data, and new hardware specs. This
helps manufacturers reduce emissions during fabrication and enables consumers to

choose lower-emission hardware.




Usage of forever chemicals from each emission source
during hardware manufacturing drives total emissions

Gas recovery
fact
a/cﬁc\)r Global warming
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Nwafers =

Number of wafers needed per chip is calculated from die area (cores X area/core + cache X
area/MB), wafer yield, and usable factor



Usage of forever chemicals from each emission source
during hardware manufacturing drives total emissions

Gas recovery

factor .
N . Global warming
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Number of wafers needed per chip is calculated from die area (cores X area/core + cache X
area/MB), wafer yield, and usable factor



Global Warming Potential and fluorinated compound
usage models vary for different emission sources

Noop | “Etch Usage scales with die area and
.F. Usagegtcp, = KEtch X ADie X NEtch, ref X ( ) X PLith  etching steps, which increase sub-
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Ftching Major compounds: CF4, C2F6,CHF3 inearly with smaller nodes; EUV

Combined GWP: 9928 ¢Co2eq requires fewer steps than DUV



Global Warming Potential and fluorinated compound
usage models vary for different emission sources

Noop | “Etch Usage scales with die area and
.?. Usagegtcp, = KEtch X ADie X NEtch, ref X ( ) X PLith  etching steps, which increase sub-

a o & N \ .
Ctching Major compounds: CF4, C2F6.CHF3 inearly with smaller nodes; EUV

Combined GWP: 9928 ¢Co2eq requires fewer steps than DUV

Cleaning frequency rises
with smaller nodes to N, | “Clean
prevent defects; usage Usageclean = kclean X ADie X NClean, ref X N X PLith

Major compounds: NF3, SF6 Chamber
Combined GWP: 19550 gCoZeq Cleaning

proportional to die area
and cleaning steps



Etching, chamber cleaning, photolithography, and heat
transfer fluids are the major sources of fluorinated
compound emissions

Precise patterning at smaller

é N, ¢ | “Photo nodes requires addrtional
Usagepypoto = KPhoto X ADie X NpPhoto, ref X N X @Lith steps; DUV needs more

u Major compounds: CHF3, C4F8 masks/steps than EUV,
Photolithography Combined GWP: 12356 gCo2eq

increasing fluorinated
compound usage



Etching, chamber cleaning, photolithography, and heat
transfer fluids are the major sources of fluorinated
compound emissions

Precise patterning at smaller

é N, ¢ | “Photo nodes requires addrtional
Usagepyoto = kPhoto X ADie X Nphoto, ref X N X @Lith steps; DUV needs more

u Major compounds: CHF3, C4F8 masks/steps than EUV,
Photolithography Combined GWP: 12356 gCo2eq

increasing fluorinated
compound usage

Heat transfer fluid usage

depends on processing Nref “Time E

. . Usager;rr = kutr X ¢ X X TDP

time and chip TDP rather SCHTF HIF 7 process, ref N AN
Major compounds: C3F8, CAF8 o

Combined GWP: 9405 gCo2eq Heat Transfer

Fluids

than die size; higher power
chips need more cooling



Fluorinated compound usage across other sources can
be expressed in terms of die area, technology node
scaling, Iithography type, and device characteristics

Source Compounds GWP | Fluorinated Compound Usage Model
aSolv
Solvent Fluids CyFs, NF; 13140 | Usageg,y, = Ksolv X Adie X Nioly Steps, ef X (I\J’Vf ) :
Dielectric Fluids C4F3, CHF; 9136 Usagepiclec = kDielec X Abie
Wafer Thinning SFg, CF4 17490 | Usageryi, = KThin X Awafer
. Nief (Test
Testing CsFg, SF¢ 16285 | Usageres = KTest X ADie X NTest, ref X ( 1N )
Package Size \|“VFS
Solderi SF, 17140 | U = X N X
oldering 6 sageyps = kvps X Nsolder, ref (Package Sizeref)
Nref OVacuum
Vacuum Pumps CF,, CyFg 9264 | Usagey,.yum = kvacuum X Npump, ref X N
. Nret “PPNC
Plasma Coatings CHF;3, C4Fg 11000 | Usageppnc = kpPNC X ADie X NPPNC, ref X N

Packaging SFg, C3Fg 18600 | Usagep,. . = kpack X Package Size




ForgetMeNot model emissions from individual sources
separately, enabling fine-grained analysis of
manufacturing-related emissions

Parameter Type Parameters

Fabrication faCﬂitY'SpeCiﬁc praCticeS and NRec> Yield, Dwyafers YUsable> ADje; kEtcha kClean’ kPhoto’ kuTr, kSolv: kDielec:

emission sources KThin» KTest> kvps, kvacuum, KPPNC; kPack> @Etch» @Cleans ®Photo> XTimes XSolv>
(fTest, AVPSs XVacuums APPNC> PLith

Reference older gener ation hardware Nrefs NEtch, ref>s NClean, refs NPhoto, ref> tprocess, ref>s NSolv Steps, refs NTest, ref>
NSolder, refs NPump, ref>s PaCkage Sizeref

New hardware specifications N, TDP, Package Size, Cores, Cache, Memory Size, Storage Size

Fab-specific practices and base usage coefficients derived from public emissions data (TRI/EPA)
and manufacturing literature, calibrated using well-documented older generation hardware (e.g,
| 4nm CPUs) as reference baseline for scaling to newer designs



Fluorinated Compound

How can fabrication facilities use ForgetMeNot to

Emissions (gCO,eq)
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reduce emissions?

22 Cores,
64 MB Cache
(instead of 32
cores, 48 MB cache)

r

‘ Reduced emissions

Emissions for 5-gen Intel Xeon CPU with 32 cores, 48 MB cache,
manufactured via EUV lithography is 21290 gCO,eq

50% Less Chamber Lower GWP Improving Gas  Doubling Recycling DUV
CLeaning, 50% Compounds (CHF3, Recovery Factor of NF3 and CyFg (instead of EUV)
More Etching C4Fg) for Cleaning to 0.95 (originally
(compared to  (increases cleaning it was 0.9)
standard practice)  steps by 1.25x)
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Combined GWP: 9928 gCo2eq Combined GWP: 19550 gCo2eq
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How can fabrication facilities use ForgetMeNot to

Emissions (gCO,eq)

30K

20K+

10K+

reduce emissions?

22 Cores,
64 MB Cache
(instead of 32
cores, 48 MB cache)

Emissions for 5-gen Intel Xeon CPU with 32 cores, 48 MB cache,
manufactured via EUV lithography is 21290 gCO,eq

‘ Reduced emissions
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How can fabrication facilities use ForgetMeNot to
reduce emissions!?

Emissions for 5-gen Intel Xeon CPU with 32 cores, 48 MB cache,
manufactured via EUV lithography is 21290 gCO,eq

. ‘ Reduced emissions

Fluorinated Compound
Emissions (gCO,eq)

22 Cores, 50% Less Chamber Lower GWP Improving Gas  Doubling Recycling DUV
64 MB Cache CLeaning, 50% Compounds (CHF3, Recovery Factor of NF3 and CyFg (instead of EUV)
(instead of 32 More Etching C4Fg) for Cleaning to 0.95 (originally
cores, 48 MB cache)  (compared to  (increases cleaning it was 0.9)

standard practice)  steps by 1.25x)

Changing h/w
\ design ] | Changing manufacturing steps )

Y

Fabrication facilities can use ForgetMeNot to model emissions from different sources and make
choices of hardware design and manufacturing steps to reduce emissions.




ForgetMeNot develops methodology to estimate
emission parameters from fabrication facility

0N Toxic Release / \ ; "o N\ / \ 4
\"’EPA Inventory Data Em1ss1.0n Public Data on A Usage
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Facility's Area C3F8, CAFS, Other Sources 4 ?Fi?ne tven Fab
° C2F6, CHF3, E> v T E>
: ] K
Average Emissions from Nl;:;,éand - f'- - AR / Etch,
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N G 8 VAN )y
US Environment Agency's Toxic Release Inventory Industry datasets provide manufacturing process parameters: |[EEE IRDS,
(TRI) data Semiconductor manufacturing process (SECOM) data, and Advanced

Semiconductor Supply Chain Dataset

ForgetMeNot uses publicly-available data to estimate the fabrication specific parameters, like the
base usage coefficients, that is used in its emission modeling



ForgetMeNot's modeled emissions closely match actual
fabrication facility emission measurements
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ForgetMeNot can effectively generalize modeling across different fabrication facilities and
hardware, modeling emissions based on the process parameters and facility-specific practices



Fluorinated compound emission trends across
manufacturing technologies, vendors, & CPU generations

T Embodied Carbon Bl Fluorinated Compounds
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Fluorinated compounds consistently exceed embodied carbon across manufacturing processes,
vendors, and generations. Newer nodes and generations increase both emission types, while
EUV Iithography reduces fluorinated emissions compared to DUV



DDR5 memory delivers both performance and
sustainability gains over DDR4

EEmbodied Carbon M Fluorinated Compounds
e Samsung DDR4 SK Hynix DDR4 Micron DDR4
= 150 150 150
—
8 100+ 100 1 100 1
L
2 507 50 1 50
3T
2 0 0 0
gg 32 64 16 32 64 32 64
0o DRAM Capacity DRAM Capacity DRAM Capacity
©
L3 Samsung DDR5 SK Hynix DDR5 Micron DDR5
®C 150 150 150
= 8_
S " 100- 100+ 100 -
L
2
© 0 0 0
© 32 64 128 16 32 64 128 16 32 64 128
DRAM Capacity DRAM Capacity DRAM Capacity

DDRS5 modules show lower carbon and fluorinated emissions per GB than DDR4 across all
capacities and vendors. Unlike CPUs, fluorinated emissions are comparable to embodied carbon
in DRAM manufacturing.



SSDs dominate environmental footprint of servers over
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memory and compute components
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Seagate SATA SSD Western Digital SATA HDD

Intel NVME SSD

N
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Storage Capacity Storage Capacity

Storage Capacity

SSDs contribute the largest share of server emissions, exceeding CPU and memory combined.
HDDs offer 66-8/% lower emissions than SSDs, while higher capacities reduce per-TB footprint

for all storage types



Service prov
emissions and

ers Can use

rocure susta

Hynix 32 GB DDR5
DRAM, Seagate 8TB
HDD

Hynix 32 GB DDRS5
DRAM, Seagate 8TB
HDD

SK Hynix 64GB DDR5
DRAM, Seagate 8TB
HDD

General Purpose Compute Optimized | Memory Optimized | Storage Optimized
Highest Emis-| 175019 gCOzeq 175019 gCOzeq 175019 gCOzeq 175019 gCOzeq
sion
Median Emis- | 96741 gCOzeq 98189 gCOzeq 102389 gCOzeq 114725 gCOzeq
sion
Lowest Emission | 43300 gCO,eq 44360 gCO2eq 49260 gCO2eq 83300 gCOzeq
Lowest Emission | 57%-gen Intel Xeon | 4/”-gen Intel Xeon | 4/*-gen Intel Xeon | 5/*-gen Intel Xeon
Hardware Gold with 20 cores, SK | Gold with 24 cores, SK | Gold with 24 cores, | Gold with 20 cores,

SK Hynix 32GB DDR5
DRAM, Samsung
7.68TB NVMe SSD

J

-orgetMeNot to estimate
Inable server configurations

Analysis spans 9,300+ server
configurations: multiple CPU
generations (Intel Xeon/AMD
EPYC), memory types
(DDR4/DDRS), and storage
options (SSDs/HDDs)

Datacenter procurement of low-emission hardware creates market demand that incentivizes
fabs to prioritize sustainable manufacturing over high-emission components



Performance vs. Emissions Trade-off: Diminishing
Returns at High Environmental Cost

Linpack HPL
B | Performance-Optimized @ Emission-Optimized benchmarks
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Performance-optimized servers offer only 8 -12% throughput improvement but increase
emissions by 50%+. The smallest performance gains come at the highest environmental cost,
making emission-optimized configurations the sustainable choice for most workloads.



ForgetMeNot reveals the full sustainabllity picture that

carbon-only accounting misses
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Server rankings change significantly when fluorinated compounds are included. Intel 848 1Y
ranks best for embodied carbon alone, but Intel 8492Y has lowest total emissions. Carbon-only
modeling tools like may lead to suboptimal sustainability choices.



ForgetMeNot models forever chemical emissions in chip
manufacturing, enabling sustainable hardware decisions
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